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Asymmetrical Gauss–Hermite Beam-Mode
Analysis of the Hexagonal Horn

Tao Shen,Student Member, IEEE, Wenbin Dou,Member, IEEE, and Zhongliang Sun

Abstract— AsymmetricalGauss–Hermite beam-mode analysis
is presented to investigate the hexagonal horn. The fractional
power in the fundamental beam mode is approximately 86%.
The near- and far-field radiation patterns are calculated. The
high fractional power in the fundamental beam mode of the
horn indicates that it can be used as an efficient Gaussian beam
launcher in quasi-optical systems.

Index Terms—Horn antennas.

I. INTRODUCTION

A T MILLIMETER and submillimeter waves, conventional
guided-wave techniques (such as waveguides) become

increasingly difficult to apply due to the decreasing dimensions
and increasing losses of the components. These problems
can be overcome entirely or partly by using quasi-optical
techniques, in which radiating beams propagate unguided, but
effectively confined near a propagation axis from one beam-
forming component to another in free space.

The behavior of quasi-optical systems is almost universally
investigated by means of Gaussian beam-mode analysis [1],
[2]. Gaussian beam modes are approximate solutions to the
wave equation, which appear in the form of Gauss–Hermite
polynomials in rectangular coordinates or Gauss–Laguerre
polynomials in cylindrical coordinates. Typically, only the
fundamental beam mode is employed in Gaussian beam-
mode analysis for quasi-optical system design. Clearly, the
accuracy of analysis based on the fundamental Gaussian beam
mode depends on the extent to which the fundamental beam
mode can be launched from the guided-wave structure using
so-called feed horns. Thus, in quasi-optical systems, a high-
efficiency Gaussian beam launcher is a critical element for
coupling to guided-wave devices such as mixers and detectors.

Gaussian beam-mode analysis of different types of feed
horns used at millimeter waves and submillimeter waves has
been studied by many researchers: the conical corrugated horn
by Wylde [3], the uniformly illuminated aperture by Padmanet
al. [4], the conical smooth-walled horn by Murphy [5], the di-
agonal horn by Withington and Murphy [6] and Johansson and
Whyborn [7], and the corrugated pyramidal square horn with
corrugations in the -plane walls by Shenet al. [8]. The results
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of the fundamental Gaussian beam-mode analysis for some
commonly used types of feed horns are summarized in [9].

Although the conical corrugated horn [3] and corrugated
pyramidal square horn with corrugations in the-plane walls
[8] launch an almost perfect Gaussian beam (the fractional
power in the fundamental beam mode of these two types of
horns is approximately 98%), they suffer from the difficulty
and expensiveness of fabrication at millimeter waves, which
become more prominent at submillimeter waves. Therefore,
a number of alternatives to them have been proposed and
investigated, among which the diagonal horn [6], [7] seems to
be most attractive. The main advantage of the diagonal horn
is the ease with which it can be fabricated using split block
techniques, which have found wide employment in the fabrica-
tion of diverse millimeter- and submillimeter-wave waveguide
circuits. In addition, the high-packing density, which can be
achieved in an array, also makes the diagonal horn an attractive
candidate for focal-plane imaging applications. Recently, a
new type of horn—the hexagonal horn—has been proposed
and investigated by Shenet al. [10]. Like the diagonal horn,
the hexagonal horn also possesses the advantages of ease of
fabrication and high-packing density.

In all of investigations of the above-mentioned differ-
ent types of feed horns, (symmetrical) Gaussian beam-mode
analysis was used. However, for feed horns with asymmetrical-
aperture field distribution and/or aperture dimensions, e.g.,
the hexagonal horn (its - and -plane aperture widths
are different) discussed in this paper, it is preferable to use
asymmetrical Gaussian beam-mode (which has different beam
parameters in the two orthogonal planes perpendicular to the
propagation axis) analysis, which would increase the fractional
power in the fundamental beam mode. Here, the asymmetrical
Gaussian beam mode is used to best fit the asymmetrical
aperture field (at the horn aperture plane). Note that the
asymmetrical Gaussian beam mode has elliptical symmetry,
while the (symmetrical) Gaussian beam mode has circular
symmetry. Since the beam parameters in the two orthogonal
planes are independent, the asymmetrical Gaussian beam mode
can be dealt with in a manner similar to the symmetrical
one. Goldsmith [11] has pointed out that the asymmetrical
Gaussian beam can be symmetrized by proper quasi-optical
components such as cylindrical lenses. Recently, asymmetrical
Gauss–Hermite beam-mode analysis has been presented to
investigate the corrugated pyramidal rectangular horn with
corrugations in the -plane walls by Shenet al. [12].

In this paper, asymmetrical Gauss–Hermite beam-mode
analysis is presented to investigate the hexagonal horn. The
high fractional power in the fundamental beam mode of the
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Fig. 1. Horn geometry. (a) Front view. (b)E-plane cut view. (c)H-plane cut view.

horn, which is slightly higher than the result for the diagonal
horn, indicates that it can be used as an efficient Gaussian
beam launcher in quasi-optical systems.

II. A SYMMETRICAL GUASS–HERMITE BEAM-MODE MODEL

For the diagonal horn, the aperture field is assumed to be
composed of two equiamplitude and inphase modes
crossing at an angle of 90(i.e., they are orthogonal) [6], [7],
[13]. Similarly, for the hexagonal horn, the aperture field can
be assumed to be composed of two equiamplitude and inphase

modes crossing at an angle of 60[10]. Thus, referring
to Fig. 1, the electric-field distribution at the hexagonal horn
aperture plane can be approximated by (1), shown at the
bottom of this page, where

if and

otherwise
(2)

is an arbitrary constant, is the side length of the horn
aperture, is the free-space wavenumber,is the
free-space wavelength, is the location at which the horn
aperture plane lies, and and are the distances from
the imaginary apexes to the horn aperture plane along the
-axis in the - and -planes, respectively. The phase term

in (1) has no meaning, except to make the

unknown beam-mode coefficients and real, which
will be given later. The electric-field distribution at the horn
aperture plane given here is more general than that in [10],
where the imaginary apexes in the- and -planes were
assumed to be coincident, i.e., .

The co-polarized (-directed) electric-field distribution
at the horn aperture plane is symmetrical with respect to
both - and -axes, whereas the cross-polarized (-directed)
electric-field distribution at the horn aperture plane is
antisymmetrical with respect to both- and -axes. Therefore,
the horn has no boresight cross-polarization. In addition, the
magnitude of the cross-polarized electric field at the horn
aperture is times less than the magnitude of the co-
polarized electric field at the horn aperture. The polarization
efficiency is

(3)

(1)
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where , , and denote the total, co-, and cross-
polarized powers, respectively. The cross-polarized power
could be eliminated by polarizer grids, which results in a
polarization loss of approximately 0.523 dB.

The aperture field must be somehow excited. For the diago-
nal horn, Love [13] used a section of circular waveguide as a
transition from standard rectangular waveguide, while Johans-
son and Whyborn [7] used a more simpledirect transition. Due
to the aperture field resemblance between the hexagonal horn
and the diagonal horn, it seems reasonable to believe that both
kinds of transitions used for the diagonal horn are applicable
to the hexagonal horn.

Since the aperture dimensions are not symmetrical, the
field radiated from the horn are represented as a sum of
asymmetrical Gauss–Hermite beam modes, as shown in (4),
at the bottom of this page [2], [12], where and are
the unknown co- and cross-polarized beam-mode coefficients
to be determined later, is the Hermite polynomial of order

, , and are the mode-independent beam widths in the
two orthogonal - and -planes, respectively (throughout
this paper, subscripts and denote parameters in the

- and -planes, i.e., - and -planes, respectively),
which vary with according to

(5)

where and are the beam-waist locations at which
and take their minimum values and (the beam-
waist widths) in the - and -planes, respectively;
and are the confocal distances in the - and -planes,
respectively, which are defined by

(6)

and are the mode-independent radii of curvature of
the wavefront in the - and -planes, respectively, which
vary with according to

(7)

and are the phase slippages per beam mode in the-
and -planes, respectively, which vary withaccording to

(8)

and and are arbitrary phase constants per beam mode
in the - and -planes, respectively. In addition,

and in (4) denote and at the horn aperture plane,
respectively.

In order to make the beam-mode coefficients and
in (4) real, and at the horn aperture plane (denoted by

and hereafter, respectively) are set to be

(9)

and the adjustable and are set to be

(10)

Using the orthogonality property of Hermite polynomials, and
after some manipulations, the beam-mode coefficients
and can be determined by evaluating the overlap integral
over the horn aperture plane, and are given by

(11)

(12)

Equation (11), for the co-polarized beam-mode coefficients, is
valid only when both and are even; otherwise, .
Equation (12), for the cross-polarized beam-mode coefficients,
is valid only when both and are odd; otherwise, .

The co- and cross-polarized fractional powers in theth
beam mode are given by (13) and (14), shown at the bottom of
the following page. Analogous to the case for and ,
(13) is valid only when both and are even; otherwise,
the co-polarized fractional power in the th beam mode
is equal to zero, whereas (14) is valid only when both

(4)
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TABLE I
THE BEAM-MODE COEFFICIENTS OF THEFIRST 42 (CO- AND CROSS-POLARIZED) ASYMMETRICAL GAUSS–HERMITE BEAM MODES

AND THE FRACTIONAL POWER IN EACH BEAM MODE FOR �x = 0:597 AND �y = 0:672. THE FRACTIONAL POWERS IN THE

REMAINING HIGHER ORDER CO- AND CROSS-POLARIZED BEAM MODES ARE 0.64%AND 1.93%, RESPECTIVELY. THE TOTAL

FRACTIONAL POWERS IN THE CO- AND CROSS-POLARIZED BEAM MODES ARE 88.66%AND 11.34%, RESPECTIVELY

and are odd; otherwise, the cross-polarized fractional power
in the th beam mode is equal to zero. Therefore, the co-
and cross-polarized beam modes are composed exclusively of
beam modes of different order. The choice of the ratios
and (denoted by and hereafter, respectively)
is, in principle, arbitrary, but a logical choice is that which
maximizes the fractional power in the fundamental (the lowest
order, i.e., , ) beam mode [3]. Using (13),
the maximum fractional power in the fundamental beam
mode—86%—is achieved for

(15)

(16)

Thus, the hexagonal horn has quite a high fundamental Gauss-
ian beam-mode content, which is slightly higher than the
result (84%) for the diagonal horn [6], [7]. Of course, due
to the asymmetrical aperture dimensions, the horn discussed
here launches the asymmetrical Gaussian beam, distinct from
the symmetrical one which the diagonal horn launches. This

is not a problem since the asymmetrical Gaussian beam can
be symmetrized by proper quasi-optical components such as
cylindrical lenses [11]. Compared with the result (85%) of
(symmetrical) Gaussian beam-mode analysis [10], the frac-
tional power in the fundamental beam mode given here does
not obviously increase. This is because the difference between
the - and -plane aperture widths of the hexagonal horn is
not obvious. Table I lists the coefficients of the first 42 (co-
and cross-polarized) beam modes and corresponding fractional
powers for and . It should be pointed
out that the polarization efficiency—88.66%—has already
been taken into account here (i.e., the fractional power in each
beam mode is given in units of the total power). If only the
co-polarized power is taken into account, the fractional power
in the fundamental beam mode is as high as 97%. This point is
meaningful because the fundamental beam mode itself is co-
polarized and, as mentioned above, the cross-polarized power
could be eliminated by polarizer grids.

Note that and have been set to be and ,
respectively (9), therefore, once and are known, the
locations and the beam-waist widths in the - and -

(13)

(14)
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Fig. 2. Near-field radiation patterns. (a) Co-polarizedE-plane. (b) Co-polarizedH-plane. (c) Co-polarizedD-plane. (d) Cross-polarizedD-plane. The
aperture dimension iska = 10. 4/3 times the maximum phase change in theH-plane isMx=2� = 0:1. The maximum phase change in theE-plane
is My=2� = 0:1. The plane of interest is taken at̂z = 1.

planes can be determined from (5) and (7), together with (6).
The distances between the beam waists and the horn aperture
along the -axis are given by

(17)

where

(18)

are 4/3 times the maximum phase change in the-plane and
the maximum phase change in the-plane, respectively, at
the horn aperture, and the beam-waist widths are given by

(19)

In addition, the adjustable and become

(20)

Thus, the beam parameters , , and at any
plane of interest perpendicular to the propagation axis can be

determined from (5), (7), and (8), together with (6). The field
radiated from the horn can then be calculated from (4).

III. N EAR- AND FAR-FIELD RADIATION PATTERNS

Taking the square of the absolute values of the co- and cross-
polarized fields radiated from the horn given in (4), after some
manipulations, the co- and cross-polarized near-field radiation
patterns can be derived.

Fig. 2 shows the normalized co-polarized-, -, and
-planes, and cross-polarized-plane near-field radiation

patterns of the horn, as a function of for ,
, and . The plane of interest is

taken at . is defined by

(21)

where

(22)

are the reduced distances in the - and -planes, re-
spectively. Once is given, and can be calculated
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Fig. 3. Far-field radiation patterns. (a) Co-polarizedE-plane. (b) Co-polarizedH-plane. (c) Co-polarizedD-plane. (d) Cross-polarizedD-plane. 4/3 times
the maximum phase change in theH-plane isMx=2� = 0:1. Parameters areMy=2�.

from

(23)

(24)

is the perpendicular distance from the-axis. It is given in
units of , which is defined by

(25)

For the far-field,

(26)

therefore,

(27)

(28)

[see (5), (6), and (8)]. Using the transformation relationship
between rectangular coordinates and spherical coordinates, the
co- and cross-polarized far-field radiation patterns can then be

derived, and are given by (29) and (30), shown at the bottom
of the following page, where and are the off-boresight
and azimuth angles, respectively.

Fig. 3 shows the normalized co-polarized-, -, and -
planes, and cross-polarized-plane far-field radiation patterns
of the horn as a function of with as a
parameter for . Fig. 4 shows the normalized co-
polarized -, -, and -planes, and cross-polarized-plane
far-field radiation patterns of the horn as a function of
with as a parameter for . It can be seen
that has an effect not only on -plane radiation patterns,
but also on -plane radiation patterns, although its effect
on -plane radiation patterns is much less than on-plane
radiation patterns—so does . This is due to the fact that
the aperture of horn discussed in this paper is hexagonal. It is
well known that when the radiating aperture is rectangular and
its aperture field is separable inand , (the maximum
phase change in the -plane) has no effect on the-plane
radiation patterns, and neither does (the maximum phase
change in the -plane) on the -plane radiation patterns.

In the near- and far-field radiation pattern calculation, beam
modes from 00th to 40 40th are used. Gaussian beam-mode
analysis converges slowly. As shown in Table I, even with
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Fig. 4. Far-field radiation patterns. (a) Co-polarizedE-plane. (b) Co-polarizedH-plane. (c) Co-polarizedD-plane. (d) Cross-polarizedD-plane. The maximum
phase change in theE-plane isMy=2� = 0:1. Parameters areMx=2�.

42 beam modes taken into account, there are still 0.64%
co-polarized and 1.93% cross-polarized fractional powers un-
accounted. The number of Gaussian beam modes needed
in the radiation-pattern calculation depends on the sidelobe

level being investigated, even if the fractional power in the
fundamental beam mode is very high [8], [12]. In general,
more beam modes are required to achieve greater accuracy in
Gaussian beam-mode analysis.

(29)

(30)

=
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IV. CONCLUSION

Asymmetrical Gauss–Hermite beam-mode analysis has been
presented to investigate the hexagonal horn. The fractional
power in the fundamental beam mode is approximately 86%.
The near- and far-field radiation patterns are calculated. The
high fractional power in the fundamental beam mode of
the hexagonal horn, which is slightly higher than the result
for the diagonal horn, indicates that it can be used as an
efficient Gaussian beam launcher in quasi-optical systems. The
only distinction between the hexagonal horn and the diagonal
horn is that the beam shape is different: the latter launches
the (symmetrical) Gaussian beam, while the former launches
the asymmetrical one. The asymmetrical Gaussian beam can
be symmetrized by proper quasi-optical components such
as cylindrical lenses [11], while the asymmetrical Gaussian
beam may also be useful for illumination of special types of
antennas, as well as in imaging applications, etc. Like the
diagonal horn, the main advantage of the hexagonal horn is
the ease with which it can be fabricated using split-block
techniques. In addition, the high-packing density, which can
be achieved in an array, also makes the hexagonal horn an
attractive candidate for focal-plane imaging applications. Of
course, the feasibility also depends on the degree of the
coupling between the horns in an array. It should be pointed
out that the fractional power in the fundamental beam mode of
the hexagonal horn (approximately 86%) given in this paper
is obtained based on the approximate electric-field distribution
at the horn aperture plane. It seems reasonable to believe that
its actual value is higher than the current one.
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