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Asymmetrical Gauss—Hermite Beam-Mode
Analysis of the Hexagonal Horn

Tao ShenStudent Member, IEEEWenbin Dou,Member, IEEE and Zhongliang Sun

Abstract— AsymmetricalGauss—Hermite beam-mode analysis of the fundamental Gaussian beam-mode analysis for some
is presented to investigate the hexagonal horn. The fractional commonly used types of feed horns are summarized in [9].
power in the fundamental beam mode is approximately 86%.  Although the conical corrugated horn [3] and corrugated
The near- and far-field radiation patterns are calculated. The - - . .
high fractional power in the fundamental beam mode of the pyramidal square horn with corrugatlgns in theplane WaII§
horn indicates that it can be used as an efficient Gaussian beam [8] launch an almost perfect Gaussian beam (the fractional
launcher in quasi-optical systems. power in the fundamental beam mode of these two types of
horns is approximately 98%), they suffer from the difficulty
and expensiveness of fabrication at millimeter waves, which
become more prominent at submillimeter waves. Therefore,

|. INTRODUCTION a number of alternatives to them have been proposed and

T MILLIMETER and submillimeter waves, conventionalinvestigated, among which the diagonal horn [6], [7] seems to
guided-wave techniques (such as waveguides) becohge most attractive. The main advantage of the diagonal horn
increasingly difficult to apply due to the decreasing dimensiois the ease with which it can be fabricated using split block
and increasing losses of the components. These probld@@hnigues, which have found wide employment in the fabrica-
can be overcome entirely or partly by using quasi-opticipn of diverse millimeter- and submillimeter-wave waveguide
techniques, in which radiating beams propagate unguided, Biicuits. In addition, the high-packing density, which can be
effectively confined near a propagation axis from one beamchieved in an array, also makes the diagonal horn an attractive
forming component to another in free space. candidate for focal-plane imaging applications. Recently, a
The behavior of quasi-optical systems is almost universaigw type of horn—the hexagonal horn—has been proposed
investigated by means of Gaussian beam-mode analysis Hijd investigated by Shegt al. [10]. Like the diagonal horn,
[2]. Gaussian beam modes are approximate solutions to the hexagonal horn also possesses the advantages of ease of
wave equation, which appear in the form of Gauss—Hermif@brication and high-packing density.
polynomials in rectangular coordinates or Gauss—Laguerren all of investigations of the above-mentioned differ-
polynomials in cylindrical coordinates. Typically, only theent types of feed hornssymmetricgl Gaussian beam-mode
fundamental beam mode is employed in Gaussian beaamalysis was used. However, for feed horns with asymmetrical-
mode analysis for quasi-optical system design. Clearly, thgerture field distribution and/or aperture dimensions, e.g.,
accuracy of analysis based on the fundamental Gaussian bélaen hexagonal horn (its2- and H-plane aperture widths
mode depends on the extent to which the fundamental beara different) discussed in this paper, it is preferable to use
mode can be launched from the guided-wave structure usigymmetrical Gaussian beam-mode (which has different beam
so-called feed horns. Thus, in quasi-optical systems, a higifarameters in the two orthogonal planes perpendicular to the
efficiency Gaussian beam launcher is a critical element fpropagation axis) analysis, which would increase the fractional
coupling to guided-wave devices such as mixers and detect@awer in the fundamental beam mode. Here, the asymmetrical
Gaussian beam-mode analysis of different types of fe&hussian beam mode is used to best fit the asymmetrical
horns used at millimeter waves and submillimeter waves hagerture field (at the horn aperture plane). Note that the
been studied by many researchers: the conical corrugated hasymmetrical Gaussian beam mode has elliptical symmetry,
by Wylde [3], the uniformly illuminated aperture by Padnetn while the (symmetrical) Gaussian beam mode has circular
al. [4], the conical smooth-walled horn by Murphy [5], the disymmetry. Since the beam parameters in the two orthogonal
agonal horn by Withington and Murphy [6] and Johansson aptanes are independent, the asymmetrical Gaussian beam mode
Whyborn [7], and the corrugated pyramidal square horn wittan be dealt with in a manner similar to the symmetrical
corrugations in théZ-plane walls by Sheat al.[8]. The results one. Goldsmith [11] has pointed out that the asymmetrical
Gaussian beam can be symmetrized by proper quasi-optical
components such as cylindrical lenses. Recently, asymmetrical
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Fig. 1. Horn geometry. (a) Front view. (by-plane cut view. (c)H-plane cut view.

horn, which is slightly higher than the result for the diagonalnknown beam-mode coefficients,,,, and B,,,, real, which
horn, indicates that it can be used as an efficient Gaussiaifi be given later. The electric-field distribution at the horn
beam launcher in quasi-optical systems. aperture plane given here is more general than that in [10],
where the imaginary apexes in thi¢- and E-planes were

Il. ASYMMETRICAL GUASS-HERMITE BEAM-MODE MopeL ~ @ssumed to be coincident, i.é,, = I,,.

The co-polarized i-directed) electric-field distribution
HF the horn aperture plane is symmetrical with respect to
both z- andy-axes, whereas the cross-polarizadd{rected)

For the diagonal horn, the aperture field is assumed to
composed of two equiamplitude and inphdb&;, modes

crossing at an angle of 9i.e., they are orthogonal) [6], [7], electric-field distribution at the horn aperture plane is

[13]. Similarly, for the hexagonal horn, the aperture fiel_d c tisymmetrical with respect to boif andy-axes. Therefore,

Pf%assun:jed to be (_:omptosed of ;twofsqugm%l:tude afnd _mphﬁ% horn has no boresight cross-polarization. In addition, the
Lo MOges crossing at an angie o 600]. Thus, referring magnitude of the cross-polarized electric field at the horn

to Fig. 1, the electric-field distribution at the hexagonal ho‘rgperture is\/3 times less than the magnitude of the co-

aperture plape can be approximated by (1), shown at Glarized electric field at the horn aperture. The polarization
bottom of this page, where

efficiency is
. V3

1 f +z < < ——
H(;L" y): 3 I |\/§y $|—\/§and|$|— 2 (2) npzﬁzi

0, otherwise Pt Feo to P N
E, is an arbitrary constany is the side length of the horn / / |Ey(, y, ZA)|2d37 dy
aperture,k = 2r /X is the free-space wavenumbe,is the =
free-space wavelength,y is the location at which the horn / / ['Ey(x’ v, 2 + | Eale, v, ZA)|2:| dudy

aperture plane lies, and, and/, are the distances from

the imaginary apexes to the horn aperture plane along the 84 + 2772

z-axis in the H- and E-planes, respectively. The phase term 40 4 3672

exp (—jkza) In (1) has no meaning, except to make the =88.66% 3

E(:L'v Y, ZA) :@Ey(a:, Y, ZA) +-%Ew($7 Y, ZA)
2 2

_E,| ik Y 4 aL sin (5 ain (7Y z Y I
_Eo{ycos<\/§a> COS(2G)+x\/§sm<\/§a> sm(2a)}H(a,a)exp< Jkza J)\lm J)\ly>
1
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where P, Feo, and P, denote the total, co-, and crossandW, in (4) denoteW, andW,, at the horn aperture plane,

polarized powers, respectively. The cross-polarized powespectively.

could be eliminated by polarizer grids, which results in a In order to make the beam-mode coefficiedts,, andB,,,,,

polarization loss of approximately 0.523 dB. in (4) real, R, and R, at the horn aperture plane (denoted by
The aperture field must be somehow excited. For the diagh, and R4, hereafter, respectively) are set to be

nal horn, Love [13] used a section of circular waveguide as a

transition from standard rectangular waveguide, while Johans- Rz, ay = He,y(24) = Loy ©)

son and Whyborn [7] used a more simplieecttransition. Due and the adjustablé,, and ¢., are set to be

to the aperture field resemblance between the hexagonal horn

and the diagonal horn, it seems reasonable to believe that both Bom. oy = — tan—t <ZA — Zox, 0y ) (10)
kinds of transitions used for the diagonal horn are applicable i Zex, ey
to the hexagonal horn. Using the orthogonality property of Hermite polynomials, and

Since the aperture dimensions are not symmetrical, th8.; some manipulations, the beam-mode coefficietts,

field radiated from the horn are represented as a sum H{yp can be determined by evaluating the overlap integral
asymmetrical Gauss—Hermite beam modes, as shown in ()er the horn aperture plane, and are given by
at the bottom of this page [2], [12], whe,,,, and B,,,,, are '

the unknown co- and cross-polarized beam-mode coefficients A = / 6 2E,
to be determined late#,,, is the Hermite polynomial of order TV pemtnmin! (Wag/a)(Way, /a)
m, W,, andW, are the mode-independent beam widths in the 1 - Jou
two orthogonaloz- andyoz-planes, respectively (throughout X / coS (—)Hm [7]
this paper, subscripts: and y denote parameters in the 0 2 2(Waz/a)
zoz- andyoz-planes, i.e.,H- and E-planes, respectively), 302 1—u/2 v
which vary with z according to Pl V3 / cos (—)
y W ’ AWasfa)? | Jo
2
Z = Zox, o \/EU —U2
Wac,' (Z) = Woac, o1 \/1 + <7jy> (5) X Hn T N | KPP | T2 dv
! ! Zex, cy (Way/a) (Way/a)®
wherez,, andz,, are the beam-waist locations at whith, (11)
and W, take their minimum valuedV,, andW,, (the beam- B — 2 2F,
waist widths) in thezoz- _and yoz—planes, respectivelyz., N m2mAnmind (Wa,/a)(Way/a)
andz., are the confocal distances in thez- andyoz-planes, 1 G
respectively, which are defined by X / sin (W—U)Hm v
2 0 2 2(Woas/)
om0y = T 6) a2 =2
“cx, cy U . U
A X exp | — | du sin [ —
. . 4(Waz/a)’ 0 2
R, and R, are the mode-independent radii of curvature of i
the wavefront in theroz- andyoz-planes, respectively, which V2 —v?
vary with z according to H, eXp 7| dv. (12)
y 2 9 (Way/a) (Way/a)

Rx'*:«_«omo . .
w(#) = (2= Zow o) valid only when bothn andn are even; otherwised,,,, = 0.

Equation (12), for the cross-polarized beam-mode coefficients,
¢ and¢, are the phase slippages per beam mode icthe s valid only when bothn andn are odd; otherwiseB, ,,, = 0.
andyoz-planes, respectively, which vary withaccording to  The co- and cross-polarized fractional powers in theth
o beam mode are given by (13) and (14), shown at the bottom of
Pz, y(2) = tan™! <%) (8) the following page. Analogous to the case ., and B,
ey (13) is valid only when bothn and » are even; otherwise,
and¢,, and¢,, are arbitrary phase constants per beam motlee co-polarized fractional power in thenth beam mode
in the zoz- and yoz-planes, respectively. In additiony4,, is equal to zero, whereas (14) is valid only when bath

14 < Zex, cy )2] 7) Equation (11), for the co-polarized beam-mode coefficients, is
z

- Zoa}, oy

= _ = = N N 2WATWAy \/§$ \/iy
E(.’L’, Y, Z) - Z Z (yArn,n + xBnln)\/W2nl+nm!TL!Wny Hrn( Wx Hn Wy

m=0n=0

2 2 2 2
x Y by s LY 1 ; 1
Xexp[ <Wx> <Wy> Jkz IR J)\Ry +J<m+2)(¢m+¢om)+J<”+2>(¢y+¢oy)

(4)
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TABLE |
THE BEAM-MODE COEFFICIENTS OF THEFIRST 42 (Co- AND CROSSPOLARIZED) ASYMMETRICAL GAUSS-HERMITE BEAM MODES
AND THE FRACTIONAL POWER IN EACH BEAM MODE FORE, = 0.597 AND {, = 0.672. THE FRACTIONAL POWERS IN THE
REMAINING HIGHER ORDER Co- AND CROSSPOLARIZED BEAM MODES ARE 0.64% AND 1.93%, RESPECTIVELY. THE TOTAL
FRACTIONAL POWERS IN THE Co- AND CROSSPOLARIZED BEAM MODES ARE 88.66%AND 11.34%, RSPECTIVELY

Mode Coefficient Fractional Power Mode Coefficient Fractional Power
m n A"’T/ED P;Z/F;or m n Bm"/EU /DITL;,II//DI(:\!
0 0 1.434826 0.857841 1 1 0.421577 0.074056
0 2 o] o] 1 3 -0.118131 0.005815
2 o] o] o] 3 1 -0.002768 0.000003
o] 4 -0.143458 0.008575 1 5 -0.030808 0.000395
2 2 -0.065357 0.001780 3 3 -0.072928 0.002216
4 0] -0.122572 0.006260 5 1 -0.070589 0.002076
0 6 0.068570 0.001959 1 7 0.070441 0.002068
2 4 0.004298 0.000008 3 5 0.064225 0.001719
4 2 0.028860 0.000347 5 3 0.070506 0.002071
6 0 0.047124 0.000925 7 1 0.024736 0.000235
0 8 0.004044 0.000007 1 9 -0.058366 0.001419
2 6 0.032501 0.000440 3 7 -0.024643 0.000253
4 4 0.018366 0.000141 5 5 -0.031845 0.000423
6 2 0.001162 0.000001 7 3 -0.019171 0.000153
8 0 0.013319 0.000074 9 1 0.020278 0.000171
0 10 -0.034876 0.000507 1 11 0.030996 0.000400
2 8 -0.034846 0.000506 3 9 -0.012455 0.000065
4 6 -0.026655 0.000296 5 7 -0.006713 0.000019
6 4 -0.014903 0.000093 7 5 -0.002387 0.000002
8 2 -0.012133 0.000061 9 3 -0.015305 0.000098
10 0 -0.030698 0.000393 11 1 -0.032991 0.000454

andn are odd; otherwise, the cross-polarized fractional powesr not a problem since the asymmetrical Gaussian beam can
in the mnth beam mode is equal to zero. Therefore, the cbe symmetrized by proper quasi-optical components such as
and cross-polarized beam modes are composed exclusivelgylindrical lenses [11]. Compared with the result (85%) of
beam modes of different order. The choice of the raligs. /a  (symmetrical) Gaussian beam-mode analysis [10], the frac-
and Wy, /a (denoted byé, and ¢, hereafter, respectively) tional power in the fundamental beam mode given here does
is, in principle, arbitrary, but a logical choice is that whicot obviously increase. This is because the difference between
maximizes the fractional power in the fundamental (the lowesie £- and H-plane aperture widths of the hexagonal horn is
order, i.e.,m = 0, n = 0) beam mode [3]. Using (13), not obvious. Table I lists the coefficients of the first 42 (co-
the maximum fractional power in the fundamental beawind cross-polarized) beam modes and corresponding fractional

mode—86%—is achieved for powers for¢, = 0.597 and ¢, = 0.672. It should be pointed
W, out that the polarization efficiency—88.66%—has already
£p = —2 = 0.597 (15) been taken into account here (i.e., the fractional power in each
Wi beam mode is given in units of the total power). If only the
& = Ty = 0.672. (16) co-polarized power is taken into account, the fractional power

in the fundamental beam mode is as high as 97%. This point is
Thus, the hexagonal horn has quite a high fundamental Gaus®aningful because the fundamental beam mode itself is co-
ian beam-mode content, which is slightly higher than thgolarized and, as mentioned above, the cross-polarized power
result (84%) for the diagonal horn [6], [7]. Of course, dueould be eliminated by polarizer grids.

to the asymmetrical aperture dimensions, the horn discussedlote that 24, and R,, have been set to bg and/,,

here launches the asymmetrical Gaussian beam, distinct froeapectively (9), therefore, oncg and ¢, are known, the

the symmetrical one which the diagonal horn launches. THacations and the beam-waist widths in thez- and yoz-

P r%on _ WA-"L’WAZ/Aran
PO - o0 o0
e v s + Bt v 2] dody
6\/371'2 2
= - A 5 Ar A1 Arn,n Eo 1
10+9W2(WA.//G)(WAJ/G)( /E,) (13)
Pr‘r‘:n _ WAWWAyBran
PO‘ - [e@) [e@)
ot / / [IEy(w, y, za)[* + | Eu(z, v, m)ﬂ dx dy
6372
= YT )Wty ) B o) (14)

T 10 + 9w2
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Fig. 2. Near-field radiation patterns. (a) Co-polarizEeplane. (b) Co-polarized?-plane. (c) Co-polarized>-plane. (d) Cross-polarized-plane. The
aperture dimension ida = 10. 4/3 times the maximum phase change in fieplane isM. /27 = 0.1. The maximum phase change in tf&plane
is My/2x = 0.1. The plane of interest is taken & = 1.

planes can be determined from (5) and (7), together with (@)etermined from (5), (7), and (8), together with (6). The field
The distances between the beam waists and the horn apertadéated from the horn can then be calculated from (4).
along thez-axis are given by

Ly [lI. NEAR- AND FAR-FIELD RADIATION PATTERNS
ZA T Zox,oy — 2 (17)
14 < 1 ) Taking the square of the absolute values of the co- and cross-
2 My polarized fields radiated from the horn given in (4), after some
manipulations, the co- and cross-polarized near-field radiation
where patterns can be derived.
M. = 7r_a2 (18) Fig. 2 shows the normalized co-polarized-, H-, and
TY N,y D-planes, and cross-polarizeB-plane near-field radiation

4/3 i h . h h in Aol q patterns of the horn, as a function &f(z — z,) for ka = 10,
are times the maximum phase change infhplane an M, /2x = 0.1, and M, /2x = 0.1. The plane of interest is

the maximum phase change in tit&plane, respectively, at taken ats = 1. 2 is defined by
the horn aperture, and the beam-waist widths are given by i T

L Azt 2y
Wos, oy = b,y . (19) = (21)
1+ (2 M,,)°
sy where
In addition, the adjustable,, and ¢,, become
~ z— Zoac,oy

—1 (g2 Zoy(7) = —— (22)

¢oac, oy = — tan ( z, ny7y) . (20) Rex, cy

Thus, the beam parametel®, ,, R, ,, and ¢, , at any are the reduced distances in thez- and yoz-planes, re-
plane of interest perpendicular to the propagation axis can $gectively. Oncez is given, 2, and 2, can be calculated
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Fig. 3. Far-field radiation patterns. (a) Co-polariz€eplane. (b) Co-polarized! -plane. (¢) Co-polarized-plane. (d) Cross-polarizef?-plane. 4/3 times
the maximum phase change in t#&-plane is M. /27 = 0.1. Parameters aré{, /2.

from
A Zoy — Rox + 2ch2
Rp =
Zex T Zey
; _ Rox — Zoy + 2anc72
2y = .
Zex T Zey

d is the perpendicular distance from theaxis. It is given in

units of » — z,, which is defined by

(Z B Zoac) + (2’ — Zoy)

2 — 2, = =

ZexpZy + ZeyZy

2 2
For the far-field,

Z = Zox, oy - Z— ZA

>1
an},cy an},cy
therefore,
W oulz — 2. Mz —
Wr,y(z) _ ox, Oy(7 7A) _ (7
anc, cy 7rWoac, oy
s
¢m,y(z) - 5

(23)

(24)

(25)

(26)

(27)

(28)

derived, and are given by (29) and (30), shown at the bottom
of the following page, wher@ and ¢ are the off-boresight
and azimuth angles, respectively.

Fig. 3 shows the normalized co-polarizé#, H-, and D-
planes, and cross-polarizédiplane far-field radiation patterns
of the horn as a function ofa sin # with M, /2% as a
parameter folM,. /27 = 0.1. Fig. 4 shows the normalized co-
polarizedE-, H-, and D-planes, and cross-polarizdd-plane
far-field radiation patterns of the horn as a functiorkefsin 6
with M, /27 as a parameter fat{,/2r = 0.1. It can be seen
that M, has an effect not only o#/-plane radiation patterns,
but also on FE-plane radiation patterns, although its effect
on E-plane radiation patterns is much less thanfplane
radiation patterns—so doe¥,,. This is due to the fact that
the aperture of horn discussed in this paper is hexagonal. It is
well known that when the radiating aperture is rectangular and
its aperture field is separable inandy, M, (the maximum
phase change in th&-plane) has no effect on th&-plane
radiation patterns, and neither da&k, (the maximum phase
change in thek-plane) on theH-plane radiation patterns.

[see (5), (6), and (8)]. Using the transformation relationship In the near- and far-field radiation pattern calculation, beam
between rectangular coordinates and spherical coordinates,rtiagles from 00th to 40 40th are used. Gaussian beam-mode
co- and cross-polarized far-field radiation patterns can then &malysis converges slowly. As shown in Table |, even with
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Fig. 4. Far-field radiation patterns. (a) Co-polariZeégplane. (b) Co-polarized -plane. (c) Co-polarized-plane. (d) Cross-polarizel?-plane. The maximum
phase change in th&-plane is M, /27 = 0.1. Parameters aré/. /2.

42 beam modes taken into account, there are still 0.64@wel being investigated, even if the fractional power in the
co-polarized and 1.93% cross-polarized fractional powers uiahdamental beam mode is very high [8], [12]. In general,
accounted. The number of Gaussian beam modes needaie beam modes are required to achieve greater accuracy in
in the radiation-pattern calculation depends on the sideloBg@ussian beam-mode analysis.

2 W,
P, ¢ —exp[ <—tan9cos<p> —2< )\OJtaHHSln(p)]

oo 0o 5 WOT
Z ZAmn\/mHm <\/_+ tan 8 cos <p> n

m=0n=0
1\ /7
X exp |: <m+ 2>(§+¢oaz) <7’L+ )( +¢oy):|‘ (29)
2
PF (6, ¢) = exp l—Z(WI/Kox tan 6 cos <p> _2<7r1/;/0y tan @ sin ¢ ]

\/QWW \/_WW
By ——— —_— Hm °% tan 6 cos "% tan @ sin

xexp[ <m+1)(g+¢om) +j<ﬂ+%)(g+¢oy>:|

<\/_WW0J tan 6 sin <p>

2

(30)
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IV. CONCLUSION [8]

Asymmetrical Gauss—Hermite beam-mode analysis has been
presented to investigate the hexagonal horn. The fraction&l
power in the fundamental beam mode is approximately 86%,
The near- and far-field radiation patterns are calculated. The
high fractional power in the fundamental beam mode of
the hexagonal horn, which is slightly higher than the resdﬂtl]
for the diagonal horn, indicates that it can be used as an
efficient Gaussian beam launcher in quasi-optical systems. Thé
only distinction between the hexagonal horn and the diagonal
horn is that the beam shape is different: the latter launchi@sg]
the (symmetrical) Gaussian beam, while the former launches
the asymmetrical one. The asymmetrical Gaussian beam can
be symmetrized by proper quasi-optical components such
as cylindrical lenses [11], while the asymmetrical Gaussian
beam may also be useful for illumination of special types
antennas, as well as in imaging applications, etc. Like tl
diagonal horn, the main advantage of the hexagonal horn
the ease with which it can be fabricated using split-bloc
techniques. In addition, the high-packing density, which cz
be achieved in an array, also makes the hexagonal horn
attractive candidate for focal-plane imaging applications.
course, the feasibility also depends on the degree of the
coupling between the horns in an array. It should be pointed
out that the fractional power in the fundamental beam mode of
the hexagonal horn (approximately 86%) given in this paper
is obtained based on the approximate electric-field distributis
at the horn aperture plane. It seems reasonable to believe
its actual value is higher than the current one.
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